Multivariate Time Series Forecasting


Multivariate time series forecasting is the process of predicting future values of multiple time series data.

A Decomposition-based State Space Model for Multivariate Time-Series Forecasting

Add code
Feb 05, 2026
Viaarxiv icon

Pruning for Generalization: A Transfer-Oriented Spatiotemporal Graph Framework

Add code
Feb 04, 2026
Viaarxiv icon

ASGMamba: Adaptive Spectral Gating Mamba for Multivariate Time Series Forecasting

Add code
Feb 02, 2026
Viaarxiv icon

SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting

Add code
Feb 03, 2026
Viaarxiv icon

Bridging Time and Frequency: A Joint Modeling Framework for Irregular Multivariate Time Series Forecasting

Add code
Jan 31, 2026
Viaarxiv icon

A Meta-Knowledge-Augmented LLM Framework for Hyperparameter Optimization in Time-Series Forecasting

Add code
Feb 01, 2026
Viaarxiv icon

PHAT: Modeling Period Heterogeneity for Multivariate Time Series Forecasting

Add code
Jan 31, 2026
Viaarxiv icon

MoDEx: Mixture of Depth-specific Experts for Multivariate Long-term Time Series Forecasting

Add code
Jan 31, 2026
Viaarxiv icon

CPiRi: Channel Permutation-Invariant Relational Interaction for Multivariate Time Series Forecasting

Add code
Jan 28, 2026
Viaarxiv icon

MoHETS: Long-term Time Series Forecasting with Mixture-of-Heterogeneous-Experts

Add code
Jan 29, 2026
Viaarxiv icon